
Evaluation of 3D Human 
Pose Estimation

1. Introduction TuMeke Ergonomics offers an innovative AI-powered safety platform that 
revolutionizes workplace ergonomic risk assessment and mitigation, with a 
primary focus on preventing musculoskeletal injuries. Leveraging advanced 
computer vision technology, TuMeke analyzes worker movements from video 
footage captured by standard smartphones, generating detailed 3D models of 
human activity without requiring cumbersome wearable devices.1

Our platform excels in conducting automated ergonomic risk assessments, 
including the Rapid Upper Limb Assessment (RULA), Rapid Entire Body 
Assessment (REBA), National Institute of Occupational Safety and Health 
(NIOSH) Lifting Equation, and Revised Strain Index (RSI), providing faster and 
more efficient evaluations compared to traditional methods.2

Central to these automated assessments is our proprietary 3D human pose 
estimation technique. This sophisticated computer vision task determines the 
precise 3D positions and orientations of a person’s body joints and bones from 
images or videos. To perform these assessments accurately, we calculate 
relative joint angles from the 3D human joints captured in the camera footage

This white paper examines the accuracy and validity of our 3D human pose 
estimation model. We explore the dataset used for model validation, the 
methodologies for joint angle calculations, and the overall performance of our 
system. This comprehensive analysis aims to demonstrate the robustness and 
reliability of TuMeke’s ergonomic risk assessment technology.
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2. Joint Angle 
Computation

Our ergonomic evaluation framework focuses on five critical joint angles 
essential for assessing workplace posture and movement: trunk (forward/lateral 
flexion and extension), neck (forward/lateral flexion and extension), shoulders 
(flexion and abduction), elbows (flexion), and knees (flexion). This section 
explores our methodologies for calculating these joint angles, providing insight 
into the biomechanical principles underlying our assessments.

Our local coordinate system (LCS) is aligned with the camera coordinate 
system. Our LCS orientation is defined as follows:

 +X axis: Oriented to the right

+Y axis: Oriented posteriorly (towards the back)

+Z axis: Oriented superiorly (upwards)

In the following subsections, we will delve into the specific computational 
methods for each joint angle, demonstrating how our advanced 3D pose 
estimation technology translates visual data into actionable ergonomic metrics.

2.1. Trunk The trunk flexion angle is a crucial metric in ergonomic assessments, providing 
valuable insights into overall posture and potential risk factors for 
musculoskeletal disorders.

The trunk vector is established by connecting two key anatomical landmarks 
within our LCS: the mid-hip joint (pelvic center) and the mid-shoulder joint 
(shoulder girdle center). Given the 3D coordinates of the mid-hip joint Phip and 
the mid-shoulder joint Pshoulder, we can compute the trunk vector as follows:

Vtrunk = Pshoulder - Phip

The normalized trunk vector serves as a representation of the trunk’s central 
axis in three-dimensional space, providing a foundation for accurate postural 
analysis. We normalize the trunk vector by dividing it by its magnitude:

Vtrunk, norm  =
Vtrunk

Vtrunk

Using vector mathematics, we calculate the angle between the normalized trunk 
vector and the vertical Z-axis of our LCS. The vertical Z-axis vector vz of the Local 
Coordinate System (LCS) is [0, 0, 1]. The angle between the normalized trunk 
vector and the vertical Z-axis can be calculated using the dot product:

cos(θ) = Vtrunk, norm · Vz
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This computation yields the trunk angle, a quantitative measure that reflects the 
degree of trunk flexion or extension:

θ = arccos(Vtrunk, norm · Vz)

Here, the trunk angle θ is calculated using the cosine inverse of the dot product 
between the normalized trunk vector and the vertical Z-axis vector. This angle 
quantifies the trunk’s orientation relative to the vertical axis, indicating the degree of 
flexion or extension.

+1 +2 +2 +3
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Figure 1 Computation of the trunk angle and the calculation of the REBA score.3

2.2 Neck To accurately determine the neck angle, we employ a two-step process that 
accounts for both the neck’s orientation and the trunk’s position. This method 
ensures a precise measurement of the neck’s flexion or extension relative to the 
shoulders.

Initial Neck Angle Calculation: We define a neck vector by connecting the thorax 
joint to the jaw joint in our LCS. Given the 3D coordinates of the jaw joint  Pjaw and the 
thorax joint Pthorax, we can compute the neck vector as follows: 

Vneck = Pjaw - Pthorax

Next, we normalize the neck vector:

Vneck, norm  =
Vneck

Vneck

The angle between the normalized neck vector and the vertical Z-axis Vz = [0, 0, 1] is 
computed using the dot product:

cos(θneck) = Vneck, norm · Vz

This provides the initial neck angle measurement:

θneck = arccos(Vneck, norm · Vz)
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Trunk Angle Calculation: The trunk angle is calculated using the method described 
in the Trunk section. Given the 3D coordinates of the mid-hip joint Phip and the mid-
shoulder joint Pshoulder, the trunk vector is computed as follows:

Vtrunk = Pshoulder - Phip 

We then normalize the trunk vector:

Vtrunk, norm  =
Vtrunk

Vtrunk

The angle between the normalized trunk vector and the vertical Z-axis is calculated 
using the dot product:

cos(θtrunk) = Vtrunk, norm · Vz

This yields the trunk angle:

θtrunk = arccos(Vtrunk, norm · Vz)

Relative Neck Angle Determination: To obtain the neck angle relative to the 
shoulders, we subtract the trunk angle from the initial neck angle:

θrelative neck = θneck - θtrunk

This methodology accounts for the overall posture of the body, ensuring that the 
reported neck angle accurately reflects the relative position of the head to the 
shoulders.
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Figure 2 Computation of the neck angle and the calculation of the REBA score.3
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2.3 Shoulder The flexion of the shoulder is a crucial measure that quantifies how much the upper 
arm is raised from the shoulder, relative to the body’s orientation. This angle is 
particularly important in ergonomic assessments as it can indicate potential risk 
factors for shoulder strain and related musculoskeletal disorders. Our calculation 
method involves several steps:

1. Establishing a Body-Centric Reference Frame: We begin by creating a reference 
frame that aligns with the subject’s body:

We calculate an average lateral vector by averaging normalized vectors from the 
hips and shoulders

Vlateral =
Vhip, norm + Vshoulder, norm 

2

A body vector is determined by connecting the pelvis to the thorax.

Vbody = Pthorax - Ppelvis 

These vectors help us define a personalized coordinate system for each subject.

2. Creating a Custom Coordinate System: Using the vectors from step 1, we 
construct a 3D coordinate system:

The X-axis aligns with the body vector (vertical orientation).

Vx =
Vbody

Vbody

The Z-axis aligns with the average lateral vector (side-to-side orientation).

Vz =
Vlateral

Vlateral

The Y-axis is derived to be perpendicular to both X and Z axes.

VY = VZ - VX

3. Analyzing Upper Arm Orientation: We then focus on the upper arm’s orientation:

The elbow-to-shoulder vector is calculated and normalized.

Vupper arm = Pshoulder - Pelbow

Vupper arm, norm =
Vupper arm

Vupper arm
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This vector is projected onto our custom coordinate system.

Vupper arm, proj = Vupper arm, norm · [ Vx  VY  VZ]

4. Calculating the Shoulder Angle: Finally, we determine the lateral arm angle:

We use tangent inverse to compute the angle between the projected arm vector 
and the body’s vertical axis.

θshoulder = arctan
Vupper arm, proj · VY

Vupper arm, proj · VX

This calculation gives us the degree of upper arm raise in a way that accounts for 
the overall body posture.

This approach provides a more reliable assessment of arm positions in various work 
scenarios, contributing to more effective ergonomic evaluations and 
recommendations.
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Figure 3 Computation of the shoulder angle and the calculation of the REBA score.3

2.4 Elbow The elbow angle is a critical metric in ergonomic assessments, providing valuable 
insights into upper limb posture and potential risk factors for repetitive strain injuries. 
Our method for calculating the elbow angle employs a vectorbased approach, 
ensuring precise and consistent measurements.


We define two key vectors based on upper limb anatomical landmarks:

Shoulder-to-Elbow Vector: A normalized vector connecting the shoulder joint to the 
elbow joint. Given the 3D coordinates of the shoulder joint Pshoulder and the elbow joint 
Pelbow, we can compute the shoulder-to-elbow vector as follows:

Vshoulder to elbow = Pelbow - Pshoulder 

Next, we normalize the shoulder-to-elbow vector:

Vshoulder to elbow, norm  =
Vshoulder to elbow

Vshoulder to elbow
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Elbow-to-Wrist Vector: A normalized vector extending from the elbow joint to the 
wrist joint. Given the 3D coordinates of the elbow joint Pelbow and the wrist joint Pwrist, 
we can compute the elbow-to-wrist vector as follows:

Velbow to wrist = Pwrist - Pelbow

We then normalize the elbow-to-wrist vector:

Velbow to wrist, norm  =
Velbow to wrist

Velbow to wrist

Calculating the Elbow Angle: The elbow angle is computed by calculating the 
inverse cosine (arccos) of the dot product between these two normalized vectors, 
then converting the result from radians to degrees. The dot product of the two 
normalized vectors is calculated as follows:

θelbow = arccos (Vshoulder to elbow, norm · Velbow to wrist, norm)

This approach allows for precise quantification of upper limb positioning, which is 
essential for comprehensive ergonomic risk assessment and the development of 
targeted intervention strategies to prevent upper extremity disorders in the 
workplace.

+1 +2 +2

Figure 4 Computation of the elbow angle and the calculation of the REBA score.3

2.5 Leg The leg angle, often referred to as the knee angle, is a critical metric in biomechanical 
analysis, providing valuable insights into lower limb kinematics and potential risk 
factors for knee-related disorders. Our method for calculating the leg angle employs 
a vector-based approach, ensuring precise and consistent measurements across 
various postures and movements.


We define two key vectors based on lower limb anatomical landmarks:

Hip-to-Knee Vector: A normalized vector connecting the hip joint center to the knee 
joint center. Given the 3D coordinates of the hip joint Phip and the knee joint Pknee, we 
can compute the hip-to-knee vector as follows:

Vhip to knee = Pknee - Phip
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Next, we normalize the hip-to-knee vector:

Vhip to knee, norm  =
Vhip to knee

Vhip to knee

Knee-to-Ankle Vector: A normalized vector extending from the knee joint center to 
the ankle joint center. Given the 3D coordinates of the knee joint Pknee and the ankle 
joint Pankle, we can compute the knee-to-ankle vector as follows:

Vknee to ankle = Pankle - Pknee

We then normalize the knee-to-ankle vector:

Vknee to ankle, norm  =
Vknee to ankle

Vknee to ankle

Calculating the Leg Angle: The leg angle is computed by calculating the inverse 
cosine (arccos) of the dot product between these two normalized vectors, then 
converting the result from radians to degrees. The dot product of the two normalized 
vectors is calculated as follows:

θleg = arccos(Vhip to knee, norm · Vknee to ankle, norm)

This approach allows for precise quantification of lower limb positioning, which is 
essential for comprehensive ergonomic risk assessment and the development of 
targeted intervention strategies to prevent knee-related disorders in the workplace.

30-60° 60°+

+2+1

Figure 5 Computation of the leg angle and the calculation of the REBA score.3
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3. Dataset The Human3.6M dataset was chosen for its comprehensive and highly accurate 
annotations in controlled settings. This dataset enables us to rigorously evaluate our 
model’s performance across a wide range of everyday activities. In the following 
sections, we will explore the specifics of the dataset, highlighting its unique features 
and explaining how it contributes to the robustness and versatility of our 3D pose 
estimation technology.

3.1 Human3.6M 
Dataset

Human3.6M is renowned as one of the largest and most comprehensive datasets 
for 3D human pose estimation. It boasts an impressive collection of 3.6 million 3D 
human poses with corresponding images, captured in a controlled laboratory 
setting. The dataset features 11 professional actors (6 male and 5 female) performing 
17 everyday activities, ensuring a wide range of human motions and poses.

4 

What makes Human3.6M particularly valuable is its high-precision 3D joint positions, 
captured using a sophisticated motion capture system. The motion capture system 
employed in the Human3.6M dataset is centered around the Vicon T40, a high-
resolution camera setup that captures detailed 3D human poses. Here’s how the 
system works:

3.1.1 Equipment 
and Setup

Vicon T40 Cameras: The dataset employs 10 Vicon T40 cameras, each with a 
resolution of 4 megapixels, capturing at a frequency of 200Hz. These cameras 
are strategically placed around the capture area to maximize the visibility and 
coverage of the subjects.

Basler piA1000 Cameras: In addition to the Vicon system, 4 Basler piA1000 
digital video cameras with a resolution of 1000x1000 pixels and a frequency of 
50Hz are used to capture high-resolution video data.

Mesa SR4000 Time-of-Flight Sensor: IA TOF sensor with a resolution of 176x144 
pixels and a frequency of 25 Hz is included to provide depth information.

Human Solutions Vitus LC3 Body Scanner: This 3D laser scanner captures 
accurate volumetric models of the subjects, with a point density of 7 dots/cm2 
and a tolerance of less than 1mm.

3.1.2 Technology and 
Methodology

Reflective Markers: Small reflective markers are attached to key points on the 
subject’s body. These markers reflect light back to the cameras, which track 
their positions over time.

Tracking and Labeling: The system maintains the label identity of each marker 
and propagates it through time from an initial pose, which can be labeled either 
manually or automatically.

Fitting Process: Using the positions and identities of the body markers, along 
with proprietary human motion models, the system infers accurate pose 
parameters. This process involves fitting a 3D skeleton model to the tracked 
marker data, allowing for precise reconstruction of human poses.



3.1.3 Data Collection and 
Synchronization

Capture Area: The designated laboratory area is approximately 6m x 5m, 
providing an effective capture space of about 4m x 3m where subjects are fully 
visible to all cameras.

Synchronization: Hardware and software synchronization ensure that all 
sensors and cameras capture data in unison, allowing for precise alignment of 
the video, depth, and motion capture data.

The scale of this dataset and the accuracy of its 3D annotations have established 
Human3.6M as a standard benchmark for evaluating 3D human pose estimation 
algorithms in controlled environments.

4. Results This section presents the accuracy evaluation of our 3D pose estimation model using 
the Human3.6M dataset. Accuracy is quantified using three statistical measures: the 
mean absolute error (MAE) of the differences between the predicted and ground 
truth joint angles, the standard deviation of these differences, and the 90th 
percentile error. These metrics provide a comprehensive overview of the model’s 
performance and reliability.

Figure 6 Sample images and their 3D ground-truth annotations from Human3.6M dataset

4.1 Metrics Mean Absolute Error (MAE): The mean absolute error represents the average 
magnitude of the absolute errors between the predicted and ground truth joint 
angles. It provides a straightforward indication of the typical error the model makes 
when estimating joint angles. A lower MAE value indicates that the model’s 
predictions are, on average, closer to the ground truth, which implies higher 
accuracy.

Evaluation of 3D Human Pose Estimation 1 0



Evaluation of 3D Human Pose Estimation 1 1

Standard Deviation: The standard deviation measures the dispersion or variability of 
the prediction errors. It quantifies how much the individual errors deviate from the 
mean error. A lower standard deviation suggests that the prediction errors are 
consistently close to the mean, indicating that the model’s performance is stable 
and reliable. Conversely, a higher standard deviation would indicate more variability in 
the prediction errors, suggesting that the model’s accuracy fluctuates more widely 
across different instances.

90th Percentile Error: The 90th percentile error represents the angle error below 
which 90% of the absolute differences between the predicted and ground truth joint 
angles fall. This metric provides an indication of the upper bound of the model’s error 
distribution, showcasing its reliability in most cases. A lower 90th percentile error 
indicates that the model’s predictions are accurate for the majority of instances.

4.1.1 Importance of 
Standard Deviation 
on Differences

Calculating the standard deviation on the differences between the ground truth and 
predicted values, rather than on the raw predictions, provides critical insights into 
the consistency of the model’s errors. This approach helps in understanding whether 
the model’s errors are consistently small or if there are occasional large errors. By 
focusing on the differences:

Error Consistency: It becomes easier to identify if the model has a consistent 
error pattern across different joint angles and frames. Consistent errors with 
low standard deviation are preferable as they are predictable and can potentially 
be corrected.

Model Reliability: Assessing the variability in errors helps in evaluating the 
model’s reliability. A model with low variability in errors is considered more 
reliable as it performs consistently across different scenarios.

4.2 Results The following table (Table 1) shows the mean absolute error (MAE), standard 
deviation, and 90th percentile error metrics for various joint angles in degrees for the 
Human3.6M dataset. The 90 %ile error indicates that 90% of the time, the 
prediction error for each joint angle is below the listed value, showcasing the 
reliability and precision of our 3D pose estimation model.



Evaluation of 3D Human Pose Estimation 1 2

Joint Angle

Trunk

Left Shoulder

Right Shoulder

Left Elbow

Right Elbow

Left Leg

Right Leg

Mean Absolute 
Error (degrees)

1.827

3.412

3.742

4.267

4.394

3.167

3.241

Standard Deviation 
(degrees)

1.833

5.451

5.44

5.869

6.071

3.271

3.25

Angle Error 
(Degrees) at 90%ile

4.419

6.792

7.635

9.121

9.346

7.853

8.150

Table 1 Mean absolute error, standard deviation, and 90th percentile error of joint angle 
errors for Human3.6M dataset.

By utilizing the mean absolute error, standard deviation, and 90th percentile error 
metrics, we can comprehensively evaluate the performance of our 3D pose 
estimation model, ensuring it not only produces accurate predictions on average but 
also maintains consistency and reliability across different poses and frames. This 
multi-metric approach helps in identifying specific areas where the model excels and 
where further improvements may be needed.

5. Conclusion The evaluation of our 3D pose estimation model underscores its accuracy and 
reliability, particularly when tested against the comprehensive Human3.6M dataset. 
The combination of low mean absolute errors, low standard deviation degrees, and 
low 90th percentile errors across multiple joint angles highlights the robustness of 
our approach. This high level of precision ensures that TuMeke Ergonomics can 
confidently provide actionable insights for preventing musculoskeletal disorders.


As we continue to refine our technology, our commitment to advancing ergonomic 
risk assessment remains steadfast. By integrating cutting-edge computer vision and 
AI with a deep understanding of human biomechanics, TuMeke is setting new 
industry standards in the quest to create safer workplaces. The results presented in 
this white paper affirm that our 3D pose estimation model is not only a powerful tool 
for current ergonomic challenges but also a foundation for future innovations in 
workplace safety and health.


This analysis reaffirms our mission to eliminate workplace musculoskeletal injuries, 
offering our clients a reliable, data-driven solution that continuously evolves to meet 
the demands of diverse and dynamic work environments.
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